2.1 Tangent and Velocity Problems

Learning Objectives: After completing this section, we should be able to

- approximate the slope of the tangent line to a curve at a point.
- approximate the instantaneous velocity of a moving object at a particular moment.

Driving question to start: If we know the exact position of on object, how can we find its velocity?

2.1.1 Limits

Example. Suppose we throw a baseball into the air. The function $p(t) = 64t - 16t^2$ gives the ball's height in feet at any time t seconds after throwing it. What is the velocity at t = 1 seconds? Let's start with a graph:

p(t)

Can we first approximate the velocity? Let's find the **average velocity** over some time intervals.

So we have done several approximations. What is the end goal?

Definition. Instantaneous Velocity is the slope of

As the second time t is closer to t = 1 in our approximations, the average velocity

This is a limit! The limit as t approaches 1 of the

 $\rightarrow x$

2.2 The Limit of a Function

Learning Objectives: After completing this section, we should be able to

- define the limit of a function and make educated guesses at limits.
- define the one-sided limit of a function and make educated guesses at limits.

2.2.1 Limit Definition

Definition. $\lim_{x \to a} f(x) = L$ means

Let's look at several examples:

 $\rightarrow x$

Note, for $\lim_{x \to a} f(x) = L$, f(x) must be arbitrarily close to L for

Definition. (One sided limit) If f(x) is arbitrary close to L for all

 $\longrightarrow x$

Definition. (Right-hand limit)

Definition. (Left-hand limit)

Example.

f(x)

Example. Let

$$f(x) = \begin{cases} 2x+1, & x > 1, \\ 2x, & x < 1. \end{cases}$$

 $\rightarrow x$

2.2.2 Indeterminate Forms

 $\longrightarrow x$

Question. What could happen for a function f(x) to **NOT** have a limit? **Example.**

←

f(x)	g(x)	h(x)

 $\rightarrow x$

~

Question. How can we recognize these examples from the functions f(x), g(x), and h(x)?

In general, if f(x) has bad behavior at x = a, then $\lim_{x \to a} f(x)$ may not exist.

- •
- •

2.2.3 Infinite Limits and Vertical Asymptotes

What does it mean for $\lim_{x \to a} f(x) = \infty$?

If $\lim_{x \to a} f(x) = \pm \infty$ or

Example. Find all vertical asymptotes of $f(x) = \frac{8x + 16}{x^2 - 4}$.

Example continued.

Example continued.

2.3 Calculating Limits

Learning Objectives: After completing this section, we should be able to

• calculate limits using various Limit Laws and properties.

2.3.1 Limit Laws

Suppose that c is any constant and the limits $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist; i.e., they are equal to a real number. Then

- 1. Constant multiples:
- 2. Sums:

- 3. Products:
- 4. Quotients:
- 5. Powers:
- 6. Roots:

Example. Suppose $\lim_{x \to a} f(x) = 2$ and $\lim_{x \to a} g(x) = -1$. Compute

$$\lim_{x \to a} \left(5 \frac{f(x)}{g(x)} - (g(x))^4 + g(x)\sqrt{f(x)} \right).$$

2.3.2 Computing Limits

Given f(x), how do we compute limits?

• If there is no bad behavior, just plug in x = a.

Example.

• If there is bad behavior, attempt to tame it.

Example.

Example.
$$\lim_{x \to 0} \frac{\frac{1}{5+x} - \frac{1}{5}}{x}$$

Example. $\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}$

You try!

Example. $\lim_{x \to 3} \frac{\frac{1}{7} + \frac{1}{x - 10}}{x - 3}$

Summary:

1. If no bad behavior at x = a,

2. If bad behavior,

- (a)
- (b)
- (c)

3. If piecewise,

(a) If

(b) If

4. If bad behavior cannot be eliminated,

2.5 Continuity and the Intermediate Value Theorem

Learning Objectives: After completing this section, we should be able to

- define continuity and discontinuity.
- state and apply the Intermediate Value Theorem.

Definition. A function f is continuous at x = a if

This means 3 things:

1. $\lim_{x \to a} f(x)$

2. f(a)

3.

Example. Consider $f(x) = \frac{x+1}{x^2-4}$.

Example. Consider $f(x) = \sqrt{x}$.

Types of discontinuities:

• Jump

 $\longrightarrow x$

 $\longrightarrow x$

• Removable

• Infinite

~

 $\longleftrightarrow x$

Example. Let $f(x) = \begin{cases} x^2 - c, & \text{if } x < 5, \\ 4x + 2c, & \text{if } x \ge 5. \end{cases}$ Find c such that f is continuous.

Question. True or False: Pick any number L between f(a) and f(b). Then, there is an x-value c between a and b such that f(c) = L.

Theorem (Intermediate Value Theorem). Assume f is continuous on [a, b], and

Why do we care about IVT?

Application of IVT: Root finding problems

Example. Kepler's equation for orbits (planets, satellites, etc...) is given by $y = x - a \sin(x)$ where

Example continued.

2.6 Limits at Infinity and Horizontal Asymptotes

Learning Objectives: After completing this section, we should be able to

- define the limits of a function at infinity and determine horizontal asymptotes of functions, if there are any.
- understand the infinite limits of a function at infinity.

Example. We've encountered the function $f(x) = \frac{8x+16}{x^2-4}$ before.

It looks may be a horizontal asymptote too. Perhaps y = 0?

Definition. x = a is a vertical asymptote if

Definition. y = L is a *horizontal asymptote* if

Example.

$$\lim_{x \to \infty} \frac{8x + 16}{x^2 - 4}$$

What is $\frac{\infty}{\infty}$?

Can we do some algebra to clean up $\lim_{x\to\infty} \frac{8x+16}{x^2-4}$ and get an actual value instead of an indeterminate form?

Question. Is it possible to have 2 horizontal asymptotes?

Example. $\lim_{x \to \infty} \frac{x}{\sqrt{x^2 + 1}}$

Question. Is it possible to have more than 2 horizontal asymptotes?

Question. How many vertical asymptotes can we have?

Consider $\lim_{x \to \infty} \frac{ax^n}{bx^m}$.

- If n > m, the limit is
- If n < m, the limit is
- If n = m, the limit is

Example. $\lim_{x \to \infty} \frac{5x^5 - 6x^2 + 10^{1000}}{3x^5 + 10x^3 - 1}$

Example. $\lim_{x \to \infty} \frac{10^{100} x^5}{0.001 x^{5.01}}$

Question. Note that $\lim_{x\to\infty} 5x + 1 = \infty$. Are there any horizontal or vertical asymptotes?

Other functions to know:

2.7 Derivatives and Rates of Change

Learning Objectives: After completing this section, we should be able to

- define the slope of the tangent line to a curve at a point as the limit of the slopes of secant lines of the curve.
- define the instantaneous velocity of a moving object as the limit of its average velocity.
- establish the definition of the derivative and interpret it as the slope of the tangent line to a curve.
- interpret the derivative as the instantaneous rate of change.

Recall from earlier: If we know position s(t), how do we get the instantaneous velocity at time t?

Definition. The instantaneous rate of change of f(x) at

Example. Find the equation of the tangent line to $f(x) = x^2 + 2x + 1$ at x = 1.

Example continued:

Let's consider another approach:

Example. Let's find the slope of $f(x) = x^2 + 2x + 1$ at x = 1 again with this alternative limit.

You try!

Example. Find the equation of the tangent line $f(x) = (x - 1)^2$ at x = 2.

Definition. The slope of the tangent line at a point x is

Definition. The *derivative of* f(x) is the function

What is the derivative? How do we interpret what it means?

Summary:

- The derivative at a point x = a is
- The derivative at any point x is
- What does f'(x) mean?
 - Instantaneous
 - Slope
 - Slope

2.8 Derivative as a Function

Learning Objectives: After completing this section, we should be able to

- define and find the derivative f' as a new function derived from a function f.
- denote a derivative using Leibniz notation and prove the fact that the if a function is differentiable then it is continuous.
- analyze the cases in which a function fails to be differentiable.
- analyze whether the derivative of a function is differentiable.

Definition. Recall that the *derivative* of f(x) is given by

A common problem is finding the equation of a tangent line to a function. We need

- •
- •

Example. Recall from last time, we found the equation of the tangent line to $f(x) = x^2 + 2x + 1$ at x = 1.

Example. What is the derivative of $f(x) = x^2 + 2x + 1$?

Example. Find the equation of the tangent line to $f(x) = x^2 + 2x + 1$ whose slope is 6.

You try!

Example. Find the derivative of $f(x) = \frac{1}{3x-1}$.

You try!

Example. Find the equation of the tangent line to $f(x) = \frac{1}{3x-1}$ at x = 1.

2.8.1 Differentiablity

 Recall

Definition. The derivative of the function f(x) is given by

When will we get $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ does not exist?

1. Corners

 $\longleftrightarrow x$

2. Cusps

 $\longleftrightarrow x$

3. Vertical Tangents

 $\longleftrightarrow x$

4. Discontinuities

 $\longleftrightarrow x$

Theorem. If f is differentiable at x = a, then

Proof. Assume f(x) is differentiable at a.

We proved differentiable implies continuity.

Question. True or False: If f is continuous, then f is differentiable.

2.8.2 Higher Order Derivatives

Since f' is a function, there is nothing stopping us from taking the derivative of f'. Notation:

Example. Find f''(x) if $f(x) = x^3 - x$.

Example Continued: